Adams-Bashforth-Coefficients

Das Adam-Bashforth Verfahren ist ein mehrstufiges Zeitintegrationsverfahren mit

$latex y(t_{n+1}) = y(t_n) + \Delta t \sum_{j=0}^m b_j f(t_{n-j},~y(t_{n-j}))$

Dabei sind $latex b_j$ die AB-Koeffizienten. Und $latex f(t, y(t)) = \frac{\partial y}{\partial t}(t,y(t))$. The AB-Coefficients can be calculated in the following way:

$latex b_j = \frac{(-1)^j}{j!(m-j)!} \int_0^1 \prod_{i=0,i\neq j}^{m} (v+i) \text{d}v$

 Table of Adams-Bashforth-Coefficients up to order 10

The following table contains the resulting coefficients calculated with the formula mentioned above.

$latex b_0$ $latex b_1$ $latex b_2$ $latex b_3$ $latex b_4$ $latex b_5$ $latex b_6$ $latex b_7$ $latex b_8$ $latex b_9$ $latex b_{10}$
0. order 1
1. order 1.5 -0.5
2. order 1.9167 -1.3333 0.4167
3. order 2.2917 -2.4583 1.5417 -0.375
4. order 2.6403 -3.8528 3.6333 -1.7694 0.3486
5. order 2.9701 -5.5021 6.9319 -5.0681 1.9979 -0.3299
6. order 3.2857 -7.3956 11.6658 -11.3799 6.7318 -2.2234 0.3156
7. order 3.59 -9.5252 18.0545 -22.0278 17.3797 -8.6121 2.4452 -0.3042
8. order 3.8848 -11.8842 26.3108 -38.5404 38.0204 -25.1247 10.7015 -2.6632 0.2949
9. order 4.1718 -14.4669 36.642 -62.6463 74.1793 -61.2836 34.8074 -12.9943 2.8776 -0.287
10. order 4.452 -17.2688 49.2505 -96.2691 133.0191 -131.8914 93.6472 -46.617 15.4862 -3.0889 0.2802

The table can be downloaded as an excel file: AB-Coefficients.